Euclidische Vakdidactiek (6): oefenen

oefening-baart-kunstDit is mijn eerste bericht van deze serie in 2014. Voor wie de serie niet vanaf het begin gevolgd heeft, hier staat een kort overzichtje.

Oefening baart zowel kunst als kunstjes. Geen zinnig mens, van welke (wiskunde)didactische overtuiging dan ook, zal ooit beweren dat je wiskunde kunt leren zonder oefening. Maar wanneer heeft het zin om te gaan oefenen?

Laat ik eerst, vooruitlopend op wat gaat komen, een onderscheid maken tussen leerstof waar echt helemaal niets aan te begrijpen valt, waar geen inzicht voor nodig is, en andere leerstof. Dat het symbool < in de wiskunde ‘is kleiner dan’ betekent, daar valt gewoon niets aan te begrijpen, dat zul je gewoon uit je hoofd moeten leren, al dan niet geholpen door een ezelsbruggetje. Het is een afspraak, die net zo goed anders had kunnen zijn.

Lotto-bal-23Lottoballen

Gelukkig is er in ons vak maar heel weinig dat je uit je hoofd moet leren, achter verreweg de meeste wiskundige begrippen zit namelijk … begrip. Natuurlijk, je kúnt het vak opvatten als een grote bak met lottoballen, waar je op goed geluk maar wat regels uit pakt, zoals mijn eigen privéleerling Tomas dat deed. Maar vroeg of laat loop je dan vast.

Op die manier geleerd worden het op den duur gewoon veel te veel regels, je gaat ze door elkaar halen.

a1mNzFzfQacmjWfVz-fS4jl72eJkfbmt4t8yenImKBVvK0kTmF0xjctABnaLJIm9Wezenskenmerk wiskunde

Maar erger: zo’n aanpak ontkent een van de wezenskenmerken van ons mooie vak, namelijk dat het te begrijpen valt. Deze aanpak belemmert ook stappen voorwaarts, gegeven het feit dat nieuwe wiskundige theorie altijd voortbouwt op al bestaande. Ja, je kunt een eerstegraads vergelijking volstrekt zonder begrip, als een kunstje, oplossen (naar links/rechts brengen; wegstrepen; ..), maar hoe pak je dan al die andere vergelijkingen aan?

Oefenen van begrippen

Voor de weinige zaken die je echt uit je hoofd moet leren geldt dat je al in een vroeg stadium kunt gaan oefenen. Op enig begrip hoef je in deze gevallen namelijk niet te gaan zitten wachten: dat zal toch nooit komen. Dus, bijvoorbeeld: twee kolommen met in de linkerkolom en in de rechterkolom getallen en dan als opdracht: ‘Plaats het juiste ongelijkheidsteken.’

Maar nu: het oefenen van begrijpelijke begrippen. Op de lagere school haalde ik altijd tienen voor rekenen. Op het gymnasium werden dat, voor wiskunde, achten, maar gelukkig bleef ik de beste van de klas voor dat vak. Maar toch: ik begreep niet echt wat ik deed. Ik maakte mijn huiswerk, mijn proefwerken, maar ik had geen inzicht.

p_aufg1Dat laatste kwam genadeloos aan het licht toen, in de vijfde, het vak Stereometrie (zeg maar: 3D Meetkunde) werd geïntroduceerd. Bij de allereerste vraag in het boek liep ik al vast, ik begreep de vraagstelling niet eens, die was zo anders dan bij Algebra en Analyse, je had echt inzicht nodig. Mijn klasgenoot Henk R. begreep het wel onmiddellijk en streefde mij in dat vak dan ook direct voorbij.

Het is later, vlak voor het eindexamen, tot mijn opluchting allemaal toch nog ‘goed’ gekomen tussen mij en Stereometrie, doordat ik ontdekte dat veel examenvraagstukken toch neerkwamen op toepassing van die ene regel: je hebt bewezen dat een lijn loodrecht op een vlak staat als je kunt aantonen dat deze loodrecht op twee lijnen in dat vlak staan. Dat lukte mij, toch weer die acht. Maar wel zonder inzicht.

Dat inzicht kwam bij mij pas veel later, op de universiteit, toen het onderwijs daar ook op gericht was. Of misschien nog wel wat later: toen ik zelf wiskundeles ging geven en een wiskundeboek schreef.

Kletskoek(en)

Een van de voormannen van de Traditionalisten, Jan van de Craats, ontkracht, naar eigen zeggen, in zijn geruchtmakende pamflet Waarom Daan en Sanne niet kunnen rekenen, een mythe uit het (realistische) rekenonderwijs: Eerst begrijpen, dan pas oefenen. Hij doet deze uitspraak over het rekenonderwijs op de basisschool, maar hij trekt dit in latere publicaties door naar het wiskundeonderwijs. Hij noemt deze mythe kletskoek en stelt zelfs dat het tegenovergestelde geldt: “Juist tijdens het oefenen ontstaat geleidelijk steeds meer begrip.”

Ik noem, op mijn beurt, juist Jan’s uitspraak kletskoek, al was het alleen maar op grond van mijn eigen ervaringen, als leerling én als leraar. Ik begrijp ook niet goed hoe een Hoogleraar in de wiskunde, die bovendien zelf heel aardige Zebraboekjes heeft geschreven, waarin hij juist mikt op dat inzicht, zo’n uitspraak kan doen. Alsof begrip vanzelf komt als je maar lang genoeg oefent.

Nee, Jan, voor begrip en inzicht is een docent nodig die zich in zijn of haar uitleg juist expliciet daarop richt. Doe je dat als docent niet, dan zal dat inzicht ook nooit, als een soort deus ex machina, over je leerlingen neerdalen, hoeveel sommen je die ook laat maken.

Didactische kampen

Voor mij is een complicerende factor in Jans betoog dat hij zich met zijn de-mythologisering tegelijk ook afkeert van de didactiek van de Realistische Wiskunde. Dat doe ik niet. Maar ik ben zeker ook geen echte fan van die laatste stroming (de nadruk die gelegd wordt op ‘realistische’ contexten vind ik bijvoorbeeld onterecht). Ik blijf in het midden van de twee rivaliserende kampen staan, zoals ik in mijn artikel over de rekentoets al schreef.

Nogmaals: oefenen

Begrip en inzicht is namelijk inhaerent aan ons vak!

Oefenen hoort bij alle leren, dus ook bij het leren van wiskunde. Maar oefenen is vooral bedoeld om iets wat je begrepen hebt te verankeren, een stevige basis te leggen voor volgende stappen. Natuurlijk is er, ook in mijn opvatting, sprake van een groeiproces: je kunt best aan het oefenen gaan als je iets nog niet helemaal 100% begrijpt. Maar oefenen en denken dat het met begrip en inzicht dan wel automatisch goed komt, dat is van een naïviteit die ik niet van een Hoogleraar had verwacht.


 Naschrift

Buiten uw zicht is er op grond van bovenstaand blogbericht een korte, aardige – want inhoudelijke en respectvolle – e-maildiscussie geweest met Jan van de Craats. Dat was natuurlijk ook wel te verwachten als je van iemand zegt dat deze kletskoek verkoopt ;-). Die term ontleende ik overigens aan Jans eigen pamflet.

In die discussie heb ik overigens geen aanleiding gezien bovenstaand bericht aan te passen. Ik voeg nog wel toe dat ik Jans opvattingen over de didactiek van het wiskundeonderwijs in het VO vooral ken via zijn Basisboek Wiskunde.

Jans pamflet gaat echter vooral over het rekenonderwijs in het basisonderwijs en in dat debat stel ik mij zelf terughoudend op, om de doodeenvoudige reden dat ik dat onderwijs niet van binnenuit ken. Zodra rekenen het VO binnenkomt steek ik wel mijn vingertje op, omdat ik daar wél wat vanaf weet, of in ieder geval denk te weten. Zie mijn eigen artikel over de rekentoets.

Tegengas

Ik denk dat het goed was dat Jan ooit gezorgd heeft voor wat tegengas, omdat het wiskundeonderwijs in de loop der jaren te veel een monocultuur is geworden, met eigenlijk maar één, dominante, didactische stroming, die van de Realistische Wiskunde.

Wij

Maar ik denk ook dat het nu hoogste tijd wordt voor een tweede pamflet van Jan: Hoe wij ervoor gaan zorgen dat Daan en Sanne beter gaan rekenen. In deze titel leg ik zelf de klemtoon op dat ‘wij’.

Omdat Jan zich via e-mail tot mij persoonlijk richtte en, naar eigen zeggen, doelbewust geen reactie in het openbaar gaf, zal ik onze mailcorrespondentie hier niet publiceren.